Brain19

GeNi」s

Genius

Sede legale: FAAC S.p.A. Soc. Unipersonale Via Calari, 10-40069 Zola Predosa BOLOGNA - ITALY Tel. +3905161724 - Fax +39 0510957820 www.geniusg.com
© Copyright FAAC S.p.A. dal 2021. Tutti i diritti riservati.
Nessuna parte di questo manuale può essere riprodotta, archiviata, distribuita a terzi né altrimenti copiata, in qualsiasi formato e con qualsiasi mezzo, sia esso elettronico, meccanico o tramite fotocopia, senza il preventivo consenso scritto di FAAC S.p.A.
Tutti i nomi e i marchi citati sono di proprietà dei rispettivi fabbricanti. I clienti possono effettuare copie per esclusivo utilizzo proprio. Questo manuale è stato pubblicato nel 2021.
© Copyright FAAC S.p.A. from 2021. All rights reserved.
No part of this manual may be reproduced, archived, distributed to third parties nor copied in any other way, in any format and with any means, be it electronic, mechanical or by photocopying, without prior written authorisation by FAAC S.p.A.
All names and trademarks mentioned are the property of their respective manufacturers.
Customers may make copies exclusively for their own use.
This manual was published in 2021.
© Copyright FAAC S.p.A. depuis 2021. Tous droits réservés.
Aucune partie de ce manuel ne peut être reproduite, archivée ou distribuée à des tiers ni copiée, sous tout format et avec tout moyen, qu'il soit électronique, mécanique ou par photocopie, sans le consentement écrit préalable de FAAC S.p.A.
Tous les noms et les marques cités sont la propriété de leurs fabricants respectifs.
Les clients peuvent faire des copies pour leur usage exclusif.
Ce manuel a été publié en 2021.
© Copyright FAAC S.p.A. ab dem 2021. Alle Rechte vorbehalten.
Kein Teil dieses Handbuchs darf reproduziert, gespeichert, an Dritte weitergegeben oder sonst auf eine beliebige Art in einem beliebigen Format und mit beliebigen Mitteln kopiert werden, weder mit elektronischen, noch mechanischen oder durch Fotokopieren, ohne die Genehmigung von FAACS.p.A. Alle erwähnten Namen und Marken sind Eigentum der jeweiligen Hersteller. Die Kunden dürfen nur für den Eigengebrauch Kopien anfertigen. Dieses Handbuch wurde 2021 veröffentlicht.
© Copyright FAAC S.p.A. del 2021. Todos los derechos están reservados. No puede reproducirse, archivarse, distribuirse a terceros ni copiarse de ningún modo, ninguna parte de este manual, con medios mecánicos 0 mediante fotocopia, sin el permiso previo por escrito de FAAC S.p.A.
Todos los nombre y las marcas citadas son de propiedad de los respectivos fabricantes.
Los clientes pueden realizar copias para su uso exclusivo.
Este manual se ha publicado en 2021.
© Copyright FAAC S.p.A. van 2021. Alle rechten voorbehouden.
Niets uit deze handleiding mag gereproduceerd, gearchiveerd, aan derden openbaar gemaakt of op andere wijze gekopieerd worden, in om het even welke vorm en met geen enkel middel, noch elektronisch, mechanisch of via fotokopiëren, zonder schrfitelijke toestemming vooraf van FAAC S.p.A. Alle vermelde namen en merken zijn eigendom van de respectievelijke fabrikanten.
De klanten mogen kopieën maken die enkel voor eigen gebruik bestemd zijn. Dez handleiding werd in 2021 gepubliceerd.

CONTENTS

EU Declaration of conformity 2
1．INTRODUCTION TO THIS INSTRUCTION MANUAL 2
Meaning of the symbols used 3
2．SAFETY RECOMMENDATIONS 4
2．1 Installer safety 4
2．2 Storage 4
2．3 Waste disposal 4
3．BRAIN19 5
3．1 Intended use 5
3．2 Limitations of use 5
3．3 Unauthorised use 5
3．4 Product identification 5
3．5 Technical specifications 6
4．INSTALLATION REQUIREMENTS 7
4．1 Electrical system 7
5．INSTALLATION 7
5．1 Tools required 7
5．2 Components 8
5．3 Connections 9
Control devices 9
Limit switches 9
Bus G－Way devices 10
Failsafe 10
LED output 10
Electric lock． 10
RQFZ radio module 11
Flashing light 11
Motors 11
Mains power supply 11
6．START－UP 12
6．1 Turn power on to the board 12
6．2 Programming 12
6．3 Operating logics． 15
6．4 Setup． 16
6．5 Configuring movements and timing 16
6．6 Adjusting the anti－crushing system 17
7．PUTTING INTO SERVICE 17
7．1 Final checks 17
7．2 Close the enclosure 17
7．3 Final operations 17
8．ACCESSORIES 18
8．1 Relay photocells 18
8．2 Limit switches 19
8．3 Bus G－Way devices 19
Connection 19
Bus G－Way photocells 19
Bus G－Way encoder． 20
Bus G－Way sensitive edges． 21
G－Way control devices． 21
Bus G－Way status 22
Registering Bus G－Way devices． 22
Verifying Bus G－Way devices 22
8．4 RQFZ radio module 23
Radio controls－JLC． 23
Radio controls－RC 24
Deleting radio controls 24
9．UPLOAD／DOWNLOAD 25
Upload Operations 25
Download Operations 25
10．DIAGNOSTICS 26
10．1 Firmware version． 26
10．2 Checking the movement． 26
10．3 Automated system status 26
10．4 LEDs check． 26
10．5 Errors 27
10．6 Alarms 27
11．MAINTENANCE 28
11．1 Scheduled maintenance 28
TABLES
囲 1 Technical data Brain19 6
曲 2 BASIC programming menu 13
曲 3 ADVANCED programming menu 14
囲 4 SETUP phases 16
囲 5 Assigning an address to the Photocells 20
曲 6 Addressing Sensitive Edges． 21
囲 7 Addressing Control Devices 21
囲 8 Automated system status 26
囲 9 Status of the LEDs 26
曲 10 Errors 27
囲 11 Alarms． 27
囲 12 Scheduled maintenance 28

EU DECLARATION OF CONFORMITY	
The Manufacturer	
Company name:	FAACS.p.A. Soc. Unipersonale
Address:	ViaCalari, 10-40069ZolaPredosa BOLOGNA
hereby declares under its own exclusive liability that the fol- lowing product:	

1. INTRODUCTION TO THIS INSTRUCTION MANUAL

This manual provides the correct procedures and requirements for installing Brain19 and maintaining it in a safe condition.
When drafting the manual, the results of the risk assessment conducted by FAAC S.p.A. on the entire product life cycle have been taken into account in order to implement effective risk reduction measures. The following stages of the life cycle of the product have been considered:

- Delivery/handling
- Assembly and installation
- Set-up and commissioning
- Operation
- Maintenance/troubleshooting
- Disposal at the end of the product's life cycle

Risks arising from installation and using the product have been taken into consideration; these include:

- Risks for the installation/maintenance technician (technical personnel)
- Risks for the user of the automation system
- Risks to product integrity (damage)

In Europe, the automation of a gate falls under the Machinery Directive 2006/42/EC and the corresponding harmonised standards. Anyone automating a gate (new or existing) is classified as the Manufacturer of the Machine. They are therefore required by law, among other things, to carry out a risk analysis of the machine (automatic gate in its entirety) and take protective measures to fulfil the essential safety requirements specified in Annex I of the Machinery Directive.
FAAC S.p.A. recommends that you always comply with the EN 12453 standard and in particular that you adopt the safety criteria and devices indicated, without exception, including the dead-man function.
This manual also contains general information and guidelines, which are purely illustrative and not exhaustive, in order to facilitate the activities carried out by the Manufacturer of the Machine in all respects with regard to carrying out the risk analysis and drafting the instructions for use and maintenance of the machine. It should be clearly understood that FAAC S.p.A. accepts no liability for the reliability and/ or completeness of the above instructions. As such, the manufacturer of the machine must carry out all the activities required by the Machinery Directive and the corresponding harmonised standards on the basis of the actual condition of the locations and structures where the product Brain19 will be installed, prior to commissioning the machine. These activities include the analysis of all the risks associated with the machine and subsequent implementation of all safety measures intended to fulfil the essential safety requirements.

This manual contains references to European standards. The automation of a gate must fully comply with any laws, standards and regulations applicable in the country where installation will take place.

Unless otherwise specified, the measurements provided in the instructions are in mm .

MEANING OF THE SYMBOLS USED

NOTES AND WARNINGS IN THE INSTRUCTIONS

WARNING ELECTRIC SHOCK HAZARD - The procedure or step described must be carried out following the instructions provided and according to the applicable safety regulations
WARNING, PERSONAL INJURY HAZARD OR RISK OF DAMAGE TO COMPONENTS - The procedure or step described must be carried out following the instructions provided and according to the applicable safety regulations.

WARNING - Details and specifications that must be complied with in order to ensure that the system operates correctly.

RECYCLING AND DISPOSAL - The materials used in manufacturing, the batteries and any electronic components must not be sent to landfill. They must be taken to authorised recycling and disposal centres

FIGURE
E.g.: 1-3 see Figure 1 - detail 3.

TABLE E.g.:囲1 see Table 1.
§ CHAPTER/SECTION E.g.: §1.1 see section 1.1.

O	LED off
-	LED on
*	LED flashing
*	LED flashing quickly

GeNivs

2. SAFETY RECOMMENDATIONS

This product has been placed on the market as a control system for one or two gate actuators and therefore must not be put into service until the machine into which it has been incorporated has been declared compliant with the Machinery Directive 2006/42/EC by its manufacturer.

Incorrect installation and/or incorrect use of the product might cause serious harm to people. Read the instructions before using the product and comply with them. Keep these instructions for future reference. Perform installation and other activities adhering to the sequences provided in the instructions manual. Always comply with all the requirements contained in the instructions and warning tables at the beginning of the paragraphs. Always comply with the safety recommendations.
Only the installer and/or maintenance technician is/ are authorised to carry out work on the components of the automation. Do not make any modifications to the original components.
Cordon off the work site (even temporarily) and prohibit access/transit. For EC countries, comply with the national legislation that transposes the European Directive on Construction sites 92/57/EC.

The installer is responsible for the installation/testing of the automation and for preparing the system Register.
The installer must demonstrate or declare that he/she has the technical-professional competency to carry out the installation, testing and maintenance in accordance with the requirements of these instructions.

2.1 INSTALLER SAFETY

Installation activities require special work conditions to reduce to the minimum the risks of accidents and serious damage. Furthermore, the suitable precautions must be taken to prevent risks of injury to persons or damage.

The installer must be in good physical and mental condition, aware of and responsible for the hazards that may be generated when using the product.
The work area must be kept tidy and must not be left unattended.
Do not wear clothes or accessories (scarves, bracelets, etc.) that may get caught in moving parts.
Always wear the personal protective equipment recommended for the type of activity to be carried out. The required level of workplace lighting must be equal to at least 200 lux.
Operate CE marked machinery and equipment in compliance with the manufacturer's instructions. Use

3. BRAIN19

3.1 INTENDED USE

The GENIUS Brain19 electronic board has been designed to control actuators for motorized swing gates intended for installation in areas that are accessible to people, the main purpose of which is to provide safe access for goods or vehicles or people in industrial, commercial or residential settings.

Any other use that is not expressly specified in these instructions is prohibited and could affect the integrity of the product and/or represent a source of danger.

3.2 LIMITATIONS OF USE

- The Brain19 can control one or two $230 \mathrm{~V} \sim$ actuators.
- The product may not be used in a constructional configuration other than the one provided for by FAAC S.p.A.
- No component part of the product may be modified.
- Brain19 must be housed in an enclosure fitted with a lock or another type of device to prevent access by unauthorised persons.

3.3 UNAUTHORISED USE

- Do not use on motors or devices that are intended for purposes other than operating gates.
- Uses other than the intended use are prohibited.
- It is prohibited to install the Brain19 on smoke and/ or fire doors.
- It is prohibited to install the Brain19 in environments in which there is a risk of explosion and/ or fire: the presence of flammable gases or fumes is a serious safety hazard (the product is not ATEX certified).
- It is prohibited to power the system with energy sources other than those specified.
- It is prohibited to integrate commercial systems and/or equipment other than those specified, or use them for purposes not envisaged and authorised by the corresponding manufacturers.
- It is prohibited to use and/or install accessories which have not been specifically authorised by FAAC S.p.A.
- It is prohibited to use the Brain19 in the presence of faults which could compromise safety.
- Do not allow water jets of any type or size to come into direct contact with the Brain19.
- Do not expose the Brain19 to corrosive chemical or environmental agents.

3.4 PRODUCT IDENTIFICATION

Translation of the original instructions

토ㄴㅗㅜㅇ

3.5 TECHNICAL SPECIFICATIONS

Brain19 It is an electronic board designed to control one or two $230 \mathrm{~V} \sim$ motors with an overall power of 800 W (800 W refers to the sum of the loads connected to the two motor outputs irrespective of how they are distributed).
Programming There are two menus for programming from the board, via display and dedicated buttons: BASIC and ADVANCED.
Bus G-Way It is possible to connect GENIUS Bus G-Way devices (photocells, sensitive edges, encoders and control devices) to the Brain19 board.
Radio system Brain19 is fitted with an integrated two channel decoding system that can memorise, various types of GENIUS radio controls by simply adding a radio module.
Encoder The PROcoder encoder accessory can be connected through which the electronic board detects the angular position and the speed of movement of the leaf and is able to detect the presence of an obstacle. End of travel slowdown The Brain19 can slow down the movement close to the open and closed positions, in order to limit inertial forces and reduce the vibrations of the gate when it is stopping.

囲 1 Technical data Brain19

Power supply voltage	$207 \ldots 253 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$
Max power	stand-by: 4.3 W
Max. motor power	800 W total
Max. accessories load	$24 \mathrm{~V}=-500 \mathrm{~mA}$
	Bus G-Way 500 mA
Max. flashing light load	$230 \mathrm{~V} \sim 60 \mathrm{~W}$ max
Ambient operating temperature	$-20 \ldots+55^{\circ} \mathrm{C}$

4. INSTALLATION REQUIREMENTS

4.1 ELECTRICAL SYSTEM

Always shut off the power supply before performing any work. If the disconnect switch is not in view, apply a warning sign stating "WARNING - Maintenance in Progress".

The electrical system must comply with applicable legislation in the country of installation.
Use components and materials with CE marking which are compliant with the Low Voltage Directive 2014/35/EU and EMC Directive 2014/30/EU.
The power supply line for the automation must be fitted with a multi-pole circuit breaker, with a suitable tripping threshold, a contact opening distance of at least 3 mm and a breaking capacity that complies with current regulations.
The power supply for the automation must be fitted with a 30 mA differential switch.
The metal parts of the structure must be earthed.
Check that the protective earthing system complies with applicable regulations in the country of installation.
The electrical cables of the automation system must be of a size and insulation class that is compliant with current legislation and laid in appropriate rigid or flexible conduits, either above or below ground. Use separate conduits for the power supply and the 12-24 V control devices / accessories cables.
Check buried cable plans to ensure that there are no other electrical cables in proximity to the planned digging/drilling locations to prevent the risk of electrocution.
Check that there are no pipes in the vicinity as well. The external electronic board must be housed in an enclosure that has a minimum IP 44 protection rating and fitted with a lock or another type of device to prevent access by unauthorised persons. The enclosure must be located in an accessible and non-hazardous area and at least 30 cm from the ground. The cable outlets must face downwards.
The conduit fittings and the cable glands must prevent the entry of moisture, insects and small animals.
Protect extension connections using junction boxes with an IP 67 protection rating or higher.
The overall length of the BUS cables must not exceed 100 m .
It is recommended to installa flashing light in a visible position to indicate when it is moving.
The control accessories must be positioned in areas that are always accessible and not dangerous for the user. It is recommended to position the control accessories within the field of view of the automation. This
is mandatory in the case of hold-to-run controls.
The hold-to-run controls in the dead-man mode of operation, must comply with standard EN 60947-5-1. If an emergency stop button has been installed, it must be EN13850 compliant.
Comply with the following heights from the ground:

- control accessories $=$ minimum 150 cm
- emergency buttons = maximum 120 cm

If the manual controls are intended to be used by disabled or infirm persons, highlight them with suitable pictograms and make sure that these users are able to access them.

5. INSTALLATION

RISKS

PERSONAL PROTECTIVE EQUIPMENT

ALWAYS DISCONNECT THE POWER SUPPLY before working on the board.
If the disconnect switch is not in view, apply a warning sign stating "WARNING - Maintenance in Progress". Turn the power on only after having made all the electrical connections and carried out the preliminary start-up checks.

5.1 TOOLS REQUIRED

Use appropriate tools and equipment in working environments which comply with applicable legislation.

GeNivs

Translation of the original instructions ENGLISH

5.2 COMPONENTS

KEY:

J1 Removable terminal board for the mains power supply
J2 Removable terminal board for connecting motors and flashing light
J3 Removable terminal board for connecting control devices and accessories power supply

J5	Connector (3 pin) for GENIUS RQFZ radio module
J6	Removable terminal board for connecting limit switches
J8	USB-A port
J10	Removable terminal board for connecting Bus G-Way devices
J11	Removable terminal board for connecting the LED and the electric lock
DISP	Programming display
P	Programming buttons
F1	Power supply fuse (230 V ~ F5 A)
F2	Accessories power supply fuse (T0.8 A)

Status LEDs	\square
Inputs LED	Status of command inputs
Limits LED	Status of limit switch inputs
USB LED	USB pen drive present
BUS LED	Bus G-Way devices
BUS MON LED	Bus G-Way line
SV LED	Power supply 5 V $=-$
24V LED	Accessories power supply 24 $==-$
ERROR LED	Error/alarm signalling
RADIO1 LED	Radio channel 1
RADIO2 LED	Radio channel 2

5.3 CONNECTIONS

Carry out the connections with the power supply disconnected.

CONTROL DEVICES

Multiple NO contacts on same input must be connected in parallel.
Multiple NC contacts on same input must be connected in series.
Below is a brief explanation of the inputs. The effect a command has may vary according to the operating logic and programming functions.

- Connecting the devices to terminal board J3:

(TOTAL motion command)
9 OP-A NO contact, connect a push-button or another type of pulse generator which, by closing a contact, commands the total opening (OPEN) of the gate.
(Motion command determined by the set operating logic)
NO contact, connect a push-button or another type of pulse generator which, by closing a contact, causes the gate to close (CLOSE in logics $c, b)$ or PARTIAL open 10 OP-B (in all other logics):

The partial opening is:

- 50% of the complete opening in systems with only one motor
- complete opening only for the leaf actuated by motor 1 in two motor systems
(Stop command)
NC contact, connect a push-button or another type of pulse generator which, by opening a contact, causes 11 STOP the automation to stop.

If the input is not used, bridge it with the common contact (-).
(Photocells active during closing)
NC contact, connect a photocell or another device that, by opening the contact during closing, reverses
12 FSW CL the gate.

(1)If the input is not used, bridge it with the common contacts (-).
(Photocell active in opening)
NC contact, connect a photocell or another device that, by opening the contact during opening, reverses 13 FSW OP the gate.
 If the input is not used, bridge it with the common contacts (-).

LIMIT SWITCHES

If no limit switches are used, there is no need to bridge the inputs (NC). If at least one limit switch is used, any unused contacts must be bridged with the common contacts (-).

| 23 | FCA1 |
| :--- | :--- | Opening limit switch motor 1 (NC)

To configure connections and functions, see § Accessories.

The Brain19 supplies $24 \mathrm{~V}=$ and is short-circuit protected with a maximum current of 500 mA for connected accessories.

$14,15,16-\quad$Common contacts / Accessories power supply negative
$17,18+24 V$ Accessories power supply positive

BUS G-WAY DEVICES

For connecting and assigning addresses see § Accessories.
Do not exceed the maximum load of 500 mA .

Power supply negative for photocell transmitters.
For connection see § Accessories.
Do not exceed the maximum load of 100 mA .

LED OUTPUT

The Brain19 has an Open Collector output for connecting a LED ($24 \mathrm{~V}=-=3 \mathrm{~W}$ max) in order to check the status of the gate remotely.

Gate status	LED status
Opening, Open, Pause	On
Closed	Off
Closing	Flashing

Alternatively, the output can be programmed to control a timed 90 s courtesy light via a relay.
Do not exceed the maximum load of 100 mA .

ELECTRIC LOCK

The Brain19 can control an electric lock mounted on the leaf activated by motor 1 in order to lock the gate in the closed position.
If the Bus G-Way encoder is installed and enabled, the electric lock is activated only just before the leaf opens from the closed position.
If the Bus G-Way is not enabled, the electric lock is activated before each opening movement, irrespective of the position of the leaf.
Use an GENIUS $12 \mathrm{~V} \sim / 24 \mathrm{~V}=-$ electric lock or a generic 24 V =- $/ 0.5$ A electric lock with a maximum current of 3 A .

RQFZ RADIO MODULE

The quick insertion connector J5 is specifically for GENIUS model RQFZ radio modules.
Insert as shown in the figure.
To memorize radio control codes see § Accessories.

FLASHING LIGHT

The flashing light indicates that the gate is moving and must be installed in a position that is visible from both sides of the gate.
The flashing light must be a 230 V , max 60 W model, fitted with an independent flashing circuit.
Pre-flashing of 3 s before movement can be enabled via programming function PF.

MOTORS

COM	Motor COMMON contact
OP	PHASE to open the electric motor
CL	PHASE to close the electric motor
C	Thrust capacitor

For single operator installations, connect the motor to terminals M1.
For double operator installations, connect:

- the motor that opens first to terminals M1
- the motor that closes first to terminals M2

!
The operators MUST be connected to the earth of the electrical system.

MAINS POWER SUPPLY

Carry out the following operations with the power supply disconnected.

Connect the Phase (L) and Neutral (N) to the 230 V ~ power supply.
The board has a F5 A fuse on the Phase.
Connect the earth of the electrical system to terminal PE.

6. START-UP

PERSONAL PROTECTIVE EQUIPMENT

Carry out the following operations (refer to the specific sections).

1. Turn power on to the board.
2. Check that the status of the LEDs is correct.
3. Configure the number of motors (Basic programming, In_{n}).
4. Enable the encoders, if present (Basic programming, En).
5. Check the leaf movement (Basic programming, П己, ПII).
6. Carry out the SETUP procedure that includes the registration of Bus G-Way devices that are connected (Basic programming, $t \mathrm{~L}$).
7. Memorise the radio controls, if used.
8. Complete the required programming.
9. Carry out the final checks to make sure that the automation system is working correctly with all the devices installed.

6.1 TURN POWER ON TO THE BOARD

Turn on the mains power supply; the 5 V and 24 V LEDs come on and the following appears on the display:
bo, then the FW version (e.g. 4.0), then 50 (SETUP required).
If the SETUP has already been carried out bo, appears on the display and then the automation status (e.g. 00).

For LED and display signals see § Diagnostics.

6.2 PROGRAMMING

When the display shows the automation status, you can enter basic or advanced programming mode.

- Basic programming

1. Press and hold the \mathbf{F} button:

The first function ($d F$) appears on the display, which is displayed as long as button F remains pressed.
2. Release the button: the display shows the value of the function.
3. Press the + or - button to modify, then press the F button to confirm to go to the next function.
Proceed in the same way for all the functions.

- Advanced programming

1. Press and hold down the \mathbf{F} button, then the + button as well:
The first function (o) appears on the display, which is displayed as long as button F remains pressed.
2. Release the buttons: the display shows the value of the function.
3. Press the + or - button to modify, then press the F button to confirm to go to the next function. Proceed in the same way for all the functions.

- Exiting programming mode

Every modified value becomes effective immediately, but when exiting from programming mode you have to decide whether to save the modifications or not. Modifications are lost if no buttons have been pressed for 10 minutes or if power to the board is disconnected before they have been saved.

1. Press and hold down the \mathbf{F} button, then the $\boldsymbol{+}$ button as well.
Alternatively, scroll through the programming menu until you reach the last function (5t).
2. Select:
$\zeta=$ save the changes
no = DO NOT save the changes
3. Press button \mathbf{F} to confirm: the display reverts to the automation status view.

囲2 BASIC programming menu

Function	n default
aI	DEFAULT CONFIGURATION Displays \sqsupset if the programming corresponds to the default settings．Select \bigsqcup If you wish to reload the default values． U the programming corresponds to the DEFAULT settings חロ the programming DOES NOT correspond to the default settings
	FUNCTIONING LOGIC Al Semi－automatic Automatic Safety Step by Step Automatic Step by Step Hold－to－run
曰曰	PAUSE TIME （displayed only if an automatic logic has been selected） Displayed in seconds up to 59 ，then in steps of 10 s ． 10．．．9（Adjustment step：1s） 1.0 .9 .5 （Adjustment step： 10 s ）
FIT	
	MOTOR 1 POWER ごこ （levels； $50=$ maximum power）
Fコ	
$E r$	ENCODER Enables／disables the encoder on both motors． ח口 disabled －enabled
FF	OPENING LIMIT SWITCH Sets or disables the effect of the opening limit switches． disabled \square stop movement \square start slowdown

Function
F CLOSING LIMIT SWITCH
Sets or disables the effect of the closing limit switches．
กロ disabled
［1］stop movement
ロコ start slowdown
「－LEAF CLOSING DELAY
（displayed only if $\Pi_{n=こ}$ ）
The delay is applied to MOTOR 1.
Displayed in seconds up to 59 ，then in steps of 10 s ．

－ا＿」 Learn Bus G－Way devices
See the relative section．
П2
MOTOR 2 OPERATION in dead man mode
（displayed only if $\Pi_{n}=$ こ）
＋OPEN（displaying $\square_{\text {ロー }}$ ）
－CLOSE（displaying LL ）
［1］MOTOR 1 OPERATION in dead man mode
\pm OPEN（displaying ロワ）
－CLOSE（displaying LL ）
tL
SETUP
See the relative section．
Бし LEAVING THE PROGRAMMING MODE 乌
〕 exit saving the settings
กIロ exit without saving the settings
After having confirmed using button \mathbf{F} ，the display indicates the STATUS of the automation：

00	closed	06	closing	
01	open	07	Fallsafe	In Progress
02	STATIONARYTHEN OPENS	01	СНеСК Вu	us 6 －Way
03	stationary then closes	09	Preflash	Hing beforeopenng
04	$\mathrm{In}_{\text {pause }}$	10	PREELASH	Hing beforeclosing
05	Opening			

GeNiபS

曲 3 ADVANCED programming menu
Function
default
ーム $\begin{aligned} & \text { REVERSESTROKE ON OPENING AND SELECTABLE } \\ & \text { CLOSE POWER }\end{aligned}$
（NOT displayed if $F[=1$ ）
The reverse stroke assists the release of the electric lock：it pushes against the closing stop before opening．
Selectable close power assists the closing of the electric lock．
DO NOT enable the function if there is not a me－ chanical closing stop fitted．
ח口 disabled
〕 enabled（3s）

Ta	LEAF OPENING DELAY（2 s） （displayed only if $\Pi_{n}=$ こ） The delay is applied to MOTOR 2. Mロ disabled $〕$ enabled	
$1 \square$	REVERSE ON OBSTACLE	ロロ

This function specifies the amount the leaf is reversed after an obstacle has been detected．
ח口 total reverse
U partial reverse（ 2 s ）

－SLOWDOWN LEAF 1 こП

Specifies the deceleration space for the leaf con－ nected to MOTOR 1 （\％of the total length of travel）．
미… （Adjustment step：1\％）

PF
PRE－FLASHING
Enables／disables pre－flashing of 3 sec ．before each movement．
ח口 disabled
〕 enabled

Function default
SEARCH FOR STOP
（displayed only if $\mathrm{En}_{n}=$ U）
This function specifies the angular space in which
to search for the opening／closing stop．In this
space，the automation is stopped by a mechanical
stop／obstacle and not by the anti－crushing system．
$\sim \sim^{\circ}$
$\sim 4^{\circ}$

| EROGRAMMING OUTPUT W．L． | |
| :--- | :--- | :--- |
| | |
| | |

－exit saving the settings
กロ exit without saving the settings After having confirmed using button \mathbf{F} ，the display indicates the STATUS of the automation：

CLOSED	ClOSING		
OPEN	FAILSAFE IN PROGRESS		
STATIONARY THEN OPENS	CHECK Bus G－Way		
In	STATIONARY THEN CLOSES	PREFLASHING BEFOREOPENING	
IN PAUSE	OPENING		

6.3 OPERATING LOGICS

the STOP command has priority in all the logics and stops the automation.
The CLOSE command always closes the automation.

- E SEMI-AUTOMATIC

This logic only uses the OPEN command.
OPEN if the automation is closed, causes it to open.
OPEN if the automation is open, causes it to close.
OPEN during opening, stops the gate and the next OPEN command closes it.
OPEN during closing, causes it to reopen.
The triggering of the photocells: during movement, reverses the gate.

- EP SEMI-AUTOMATIC STEP-BY-STEP

This logic only uses the OPEN command.
OPEN if the automation is closed, causes it to open.
OPEN if the automation is open, causes it to close.
OPEN during opening or closing, stops the gate and the next OPEN command reverses the direction.
The triggering of the photocells: during movement, reverses the gate.

- 5P AUTOMATIC STEP BY STEP

This logic only uses the OPEN command.
OPEN if the automation is closed, causes it to open. The automation closes automatically after the pause time has elapsed.
OPEN during pause, causes it to close.
OPEN during opening or closing, stops it and the next OPEN command reverses the direction.
The triggering of the closing photocells: during pause, closes the gate - during opening, requests closing - during closing, causes the gate to open and then closes it immediately.

- A AUTOMATIC

This logic only uses the OPEN command.
OPEN if the automation is closed, causes it to open. The automation closes automatically after the pause time has elapsed.
OPEN during the pause, resets the pause time.
OPEN during opening, is ignored.
OPEN during closing, causes it to reopen.
The triggering of the closing photocells: during pause, reloads the pause time.

- AP AUTOMATIC STEP-BY-STEP

This logic only uses the OPEN command.
OPEN if the automation is closed, causes it to open. The automation closes automatically after the pause time has elapsed.

OPEN during pause, stops the gate and the next OPEN command closes it.
OPEN during opening, stops the gate and the next OPEN command closes it.
OPEN during closing, causes it to reopen.
The triggering of the closing photocells: during pause, reloads the pause time.

- b SEMI-AUTOMATIC b

This logic uses the OPEN A commands to open and OPEN B (CLOSE) to close. Partial motion is not available.
OPEN if the automation is closed, causes it to open.
OPEN during closing, causes it to reopen.
CLOSE commands the closure.
If the photocells are triggered: the direction of movement is reversed.

- [

DEAD-MAN
This logic uses the maintained commands OPEN A (OPEN) to open and OPEN B (CLOSE) to close. Partial motion is not available.

A maintained command must be activated intentionally and the automation must be visible.

Maintained OPEN opens the automation.
Maintained CLOSE closes the automation.
If the photocells are triggered: movement is stopped.

6.4 SETUP

The SET-UP procedure consists of a series of movements during which the board acquires the length of travel and other leaf parameters. The SETUP procedure also registers the Bus G-Way devices that are present.
SETUP needs to be carried out:

- when 50 flashes on the display (e.g. when the automation is first put into operation)
- after a board has been replaced
- if you wish to modify the length of travel of the leaves
- if there are active errors that require the SETUP procedure to be carried out
- if programming functions are modified that require a new SETUP
Checks prior to SETUP:
- the automation must not be set to manual mode
- the STOP input, if not used, must be bridged
- make sure that the settings of the following functions in Basic Programming are correct:
In number of motors
En encoder (has to be enabled, if present)
FR/F[limit switches (if present, they should be disabled)

While the SETUP procedure is being carried out, prevent transit in the area of movement of the leaves because the safety devices are disabled.

1. Go to the tl function in basic programming. The value displayed is --.
The leaves must be closed. To close them now, press the + button for Leaf1 and the - button for Leaf2.
2. Press the + and $\boldsymbol{-}$ buttons simultaneously for a few seconds.
The display flashes, then the first movement starts and 51 appears on the display.
Release the buttons.
3. SETUP starts. The display indicates the current phases with a flashing code (from 51 to 54, see囲 SETUP phases).
If the SETUP procedure doesn't start or stops before it has been completed, the board exits from programming mode and 50 flashes on the display: check the ERRORS that are present (§ Diagnostics).

囲 4 SETUP phases
Display Phase
51 Leaf1 opens: searching for the OPEN position
52* Leaf2 opens: searching for the OPEN position
53* Leaf2 closes: searching for the CLOSED position
54 Leaf1 closes: searching for the CLOSED position
00 SETUP has been completed. The board exits from programming mode and the display shows the automation status - closed.

* phase NOT carried out in the case of a single leaf automation.

The phases are carried out automatically in sequence. The open/closed position is recognised according to the system configuration:

- Operation with encoder

The board automatically recognises the position if a mechanical stop is present.
If there is no mechanical stop, an OPEN A command is sent at the point in which you want the leaf to stop.

- Operation without encoder (timed)

An OPEN A command is sent as soon as the leaf reaches the mechanical stop.

6.5 CONFIGURING MOVEMENTS AND TIMING

In BASIC PROGRAMMING

- PA Pause time (OPEN A and OPEN B) In operating logics with automatic closing, the gate remains open for the set pause time.
- Mn Number of motors Before carrying out the SETUP procedure, the number of motors has to be configured in order to specify single or two leaf operation.
- [d Leaf closing delay This function is used in 2-leaf automations to prevent interference between leaves and to handle any overlap.

In ADVANCED PROGRAMMING

- Od Leaf opening delay This function is used in 2-leaf automations to prevent interference between leaves and to handle any overlap.

GeNiபs

6.6 ADJUSTING THE ANTI-CRUSHING SYSTEM

Anti-crushing protection is obtained by limiting the static force exerted by the operator in the event of impact with an obstacle. When an obstacle is detected, the board also issues a reverse command.
Obstacle detection is via the encoder (if present) or via the activation of a sensitive safety edge.
The functions used for adjusting the anti-crushing system are listed below. Some allow the static force or the kinetic energy of the leaf on the obstacle to be limited; others configure the reverse on obstacle. Adjust the functions together, taking into consideration the configuration of the automation and the conditions of use. For example, in particularly windy areas, with panelled leaves, if the sensitivity of the anti-crushing system is too high, it can cause frequent unwanted reversals to occur.

In BASIC PROGRAMMING

- FI Motor 1 Power, F己 Motor 2 Power Decrease the value if you want to limit the static force in the event of impact.
- En Encoder If encoders are installed, they must be enabled to detect obstacles.
- rB Search for stop Reverse on obstacle via encoder is not active in the search for stop space.

In ADVANCED PROGRAMMING

- IP Reverse on obstacle Specifies the amount by which the leaf is reversed: complete or for 2 s .
- rl, r己 Slowdown Leaf1, Leaf2 Specifies the extent of the leaf slowdown near the open / closed positions. The slowdown allows you to limit the inertial forces and reduce the vibrations of the gate when it is stopping.
- E[Anti-crushing sensitivity Specifies the speed at which the anti-crushing system triggers after an obstacle has been detected by the encoder.

7. PUTTING INTO SERVICE

7.1 FINAL CHECKS

1. Make sure that the forces generated by the gate are within the limits permitted by the current regulations. Use an impact force tester in accordance with EN 12453. For non-EU countries, of there are no specific local regulations, the force must be less than 150 N . If necessary, make any adjustments that may be needed by referring also to the operator instructions.
2. Carry out a complete functional test of the automation and all the installed devices.
3. Refer to the operator instructions for any additional tests that may be required.

7.2 CLOSE THE ENCLOSURE

Close the enclosure in which the board is housed by referring to the specific instructions.

7.3 FINAL OPERATIONS

Make sure that the system delivery requirements have been fulfilled (otherwise arrange for them) i.e. that they correspond to the board installed / replaced.

GeNiபs

8. ACCESSORIES

8.1 RELAY PHOTOCELLS

Photocells are additional type D detection devices (according to EN 12453) that reduce the likelihood of contact with the moving leaf. The photocells are not safety devices according to standard EN 12978. Detection devices used as safety accessories (e.g. sensitive edges) to protect against a hazard, must comply with standard EN 12978.
(i) Use photocells with a NC relay contact. If multiple photocells are used, the contacts must be connected in series.

Position and connect the photocells according to their required use (2):

FSW OP Photocell active during opening
FSW OP/CL Photocell always active
The action carried out when the photocells are triggered depends on the operating logic selected.

1 pair of closing or opening photocells

FSW CL o FSW OP

2 pairs of closing or opening photocells

FSW CL o FSW OP

- Failsafe

Failsafe is a functional test that is carried out before a movement. It consists of momentarily interrupting the power supply to the devices and checking the change in status of the input.
If the test fails, the board generates an error and prevents the automation from moving.
To enable the Failsafe test: set the function $\mathrm{FS}=[\mathrm{I}$ in advanced programming.

1 pair of opening and closing photocells
FSW CL FSW OP

1 pair of closing photocells and 1 pair of opening and closing photocells
FSW OP FSW CL

8.2 LIMIT SWITCHES

The limit switch inputs (3) are disabled by default. To enable the inputs and specify the function of the connected limit switches (stop movement or start slowdown) use FA and F[in basic programming. Modifying the functions requires a new setup (the board signals error 14).
If no limit switches are used, there is no need to bridge the inputs (NC). If at least one limit switch is used, any unused contacts must be bridged with the common contacts (-).
These inputs can be used to connect the Timecoder accessory (also in combination with the limit switches, if present).
Use parameter En to enable the encoder.

Timecoder

Timecoder + Limit switch

TC1	Timecoder for Leaf1
TC2	Timecoder for Leaf2

8.3 BUS G-WAY DEVICES

It is possible to connect GENIUS Bus G-Way devices (photocells, sensitive edges, encoders, control devices) to this board.

(i)If no Bus G-Way accessories are used, leave connector J10 free. Do not bridge.

CONNECTION

Connecting the Bus G-Way devices to connector J10.
The overall length of the Bus G-Way cables must not exceed 100 m .
The BUS line does not require a matching polarity connection (apart from the encoder connection, see specific section).

BUS G-WAY PHOTOCELLS

Photocells are additional type D detection devices (according to EN 12453) that reduce the likelihood of contact with the moving leaf. The photocells are not safety devices according to standard EN 12978. Detection devices used as safety accessories (e.g. sensitive edges) to protect against a hazard, must comply with standard EN 12978.

Type of use (2):

FSW CL	Photocell active during closing
FSW OP	Photocell active during opening
FSW OP/CL	Photocell always active
OPEN	Photocell for OPEN A

(i)The action carried out when the photocells are triggered depends on the operating logic selected.

1. Assign an address to the Bus G-Way photocells by setting the four DIP switches on both the transmitter and the corresponding receiver.

The transmitter and receiver of a pair of photocells must have the same DIP switch settings.
There must never be two or more pairs of photocells with the same DIP switch settings. If there is more than one pair of photocells with the same address, a conflict error is generated.

GeNiபS

2. Register the Bus G-Way photocells (see specific section).
3. Check the Bus G-Way devices (see specific section) and make sure that the automation operates according to the type of photocell installed.

囲 5 Assigning an address to the Photocells Key: $0=0$ FF , $1=0 \mathrm{~N}$

1	0	0	0		
1	0	0	1		
1	0	1	0	\quad	$O N$
:---					
-					
1	2				
:---					

$$
1011
$$

$$
1100
$$

1110

0	0	0	0
0	0	0	1

0010	FSW OP
0011	
0111	
0100	-FSW OP/CL
01101	
1111	OPEN

BUS G-WAY ENCODER

1. Connect the cables of the encoder to the BUS terminal board (4, 5).
2. After turning on power to the board, check the LEDs on each encoder with the leaf stationary:
DL1 lit = encoder powered
DL2 lit = encoder connected to motor M1
DL2 off = encoder connected to motor M2
For each encoder that does not appear to be connected to the correct leaf, temporarily disconnect the power supply and invert the 2 wires on the BUS terminal board.
3. Register the devices (see specific section).
4. Check the Bus G-Way devices(see specific section).

PROcoder

DL2 lit = encoder connected to motor M1
DL2 off = encoder connected to motor M2

BUS G-WAY SENSITIVE EDGES

\triangleIf the sensitive edge is used to protect against a hazard, it must comply with standard EN 12978.

Type of use:
CLEDGE Sensitive edge active during closing
OPEDGE Sensitive edge active during opening
The activation of a sensitive edge causes the direction of movement to reverse, which can be:

- complete if $\mathbb{P}=$ no in programming
- partial (2s) if $\mathbb{P}=\zeta$ in programming

1. Assign an address to the device electronics by setting the four DIP switches.

No two devices should have the same DIP switch settings. If there is more than one device with the same address, a conflict error is generated.
2. Register the device (see specific section).
3. Check the Bus G-Way devices (see specific section) and make sure that the sensitive edges are working correctly. When the gate is moving, activate the sensitive edge using an obstacle and make sure that the automation operates according to the type of sensitive edge installed.

囲 6 Addressing Sensitive Edges

Key: $0=0$ FF , $1=0 \mathrm{~N}$

1	1	0	1	CLEDGE
011	1	0	OPEDGE	

G-WAY CONTROL DEVICES

4
Do not use the Bus G-Way line for emergency stop commands.

1. Configure the DIP switches on the device to assign 1 o 2 commands.

Stop NC also generates a stop when the device is disconnected. A command (e.g.: OPEN A_1) must be used on only one of the connected devices.
2. Register the device (see specific section).
3. Check the Bus G-Way devices (see specific section) and make sure that the automation operates according to the type of control devices installed.

曲 7 Addressing Control Devices

Key: 0=0FF , 1=0N
DIP switch 5 enables the device for 1 (OFF)command or 2 (ON) commands

$O N$			
--	-	-	-
1	2	3	4

00000 Open A_1

| 0 | 0 | 0 | 1 | 0 | Open A_2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | 0 | Open A_3 |
| 0 | 0 | 1 | 1 | 0 | Open A_4 |
| 0 | 1 | 0 | 0 | 0 | Open A_5 |
| 0 | 1 | 0 | 1 | 0 | Stop |
| 0 | 1 | 1 | 0 | 0 | Stop NC_1 |

01110 Stop NC_2

10000 Close
10010 Open B_1
10110 Open B_3
11000 Open B_4
11010 OpenB_5
$11100 /$

| 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | Open A_1 $^{\text {Open B_1 }}$

00001 Open A_1 Open B_1

GeNi』S

BUS G-WAY STATUS

To verify the Bus G-Way connection, check the LEDs on the board:

BUS MON	O At least one device is in operation
	O NO devices in operation
BUS	OK
	O SLEEP
	* SHORT CIRCUIT
	* ERROR

The status of the Bus G-Way is also shown in the bu function in Basic Programming:

no	No device registered
-	At least one device registered
ca	Bus G-Way line short-circuited
Er	Bus G-Wayline error

REGISTERING BUS G-WAY DEVICES

Registration is required:

- when the automation system is first started or after the board has been replaced
- following any changes (addition, replacement or removal) to the Bus G-Way devices

Registration procedure:

The SETUP procedure registers the Bus G-Way devices that are connected. Alternatively, you can carry out the following procedure:

1. Withtheboard powered, gotothebufunctioninbasic programming. If there are no devices registered, no will appear on the display, otherwise segment 13 will be lit (7).
Press the + and $=$ simultaneously for at least 5 s . The display flashes, then $Ч$ appears (registration complete).
2. Release the buttons.
3. Exiting from programming mode.

VERIFYING BUS G-WAY DEVICES

1. Select parameter bu in basic programming. If there are no devices registered, no will appear on the display, otherwise segment 13 will be lit. This menu can be used to check the operation of the registered devices: activate each device and check that the corresponding segment lights up (E) 7)
2. Press and hold the + button and keep it pressed; the segments relative to the registered devices will come on. Each segment of the display corresponds to a type of device:

1	Open A control device
2	Open B control device
3	Closing photocells
4	Photocell for Open impulse
5	Opening/Closing photocells
6	Close control device
7	Opening photocells
8	Stop control device
9	Closing sensitive edge
10	Encoder - leaf 2
11	Not used
12	Opening sensitive edge
13	Bus G-Way status
14	Encoder - leaf 1

8.4 RQFZ RADIO MODULE

Brain19 is fitted with an integrated two-channel decoding system that can memorise, via the RQFZ radio module, GENIUS radio controls that use the following types of radio code: JLC, RC.

(i)
The two types of radio codes can coexist simultaneously.
A maximum of 255 codes can be memorised.
The memorised codes act as OPEN A or OPEN B/CLOSE commands.
The radio controls and the RQFZ radio module must have the same frequency.
When memorising the codes, keep the radio control approximately one meter from the RQFZ radio module.

1. Insert the RQFZ radio module into the J 5 connector, being careful to insert it in the right way round and with the mains power switched off.

2. Turn power on to the board.
3. Memorise the radio controls.

RADIO CONTROLS - JLC

Memorise the first radio control, MASTER, on the board. Then add other radio controls that are required following the learning procedure that doesn't require you to access the board.
To check if the radio control is a MASTER device, press and hold a button and watch the LED:

- flashes briefly, then the light becomes steady $=$ MASTER
- turns on immediately with a steady light = NON MASTER

(i)Whenever a new master is memorised on the board, any JLC radio controls that are already in use are disabled.

- Memorising the first radio control

1. On the board, press the + button (memorize OPEN A) or the= button (memorize OPEN B/CLOSE) and release it when the corresponding RADIO Led (RADIO1 or RADIO2) starts to flash for 20 s (time available for the next steps).
2. Press buttons P1 and P2 simultaneously on the radio control and release them when its LED starts to flash for 8 s (time available for the next step).
3. Press and release the button on the radio control to be memorised. The corresponding RADIO LED on the board becomes steady for 1 s , then switches off (memorisation complete).
4. Release the button.

When using the memorised button for the first time, press it twice in succession to obtain the command.

- Adding radio controls

1. Press buttons P1 and P2 simultaneously on the already memorised MASTER radio control and release them when its LED starts to flash for 8 s (time available for the next step).
2. Within 8 seconds, press and hold the button that has already been memorised, the LED lights up with a steady light.
3. Bring the radio control that has already been memorised, into contact face to face with the new one to be memorised.
4. Press the button to be memorised on the new radio control and make sure that its LED flashes twice before turning off.
5. Release all buttons.

When using the memorised button for the first time, press it twice in succession to obtain the command.

GeNiUS
 RADIO CONTROLS - RC

- Memorizing radio controls

1. On the board, press the + button (memorize OPEN A) or the- button (memorize OPEN B/CLOSE) and release it when the corresponding RADIO Led (RADIO1 or RADIO2) starts to flash for 20 s (time available for the next steps).
2. Press and release the button on the radio control to be memorised. The corresponding RADIO LED on the board becomes steady for 2 s (memorisation completed), then starts to flash again. Another radio control can be memorised within 20 s .
The procedure ends after 20 s if no further radio controls are memorised and the RADIO LED switches off. To add additional radio controls, repeat the procedure from step 1.

Adding radio controls remotely
Use a RC radio control that is already used by the automation, without having to use the board.

1. Take a radio control that is already in use and move close to the board.
2. Press buttons P1 and P2 simultaneously on the radio control that is already in use and release them when its LED starts to flash slowly for 5 s (time available for the next step).
3. Press and release the button that has already been memorized (the corresponding RADIO LED on the board starts to flash for 20 s , the time available for the next step).
4. Press the button to be memorised on the new radio control (the corresponding RADIO LED on the board becomes steady for 2 s to confirm the memorization. It then starts to flash again and another radio control can be memorised within 20 s). The procedure ends after 20 s if no further radio controls are memorised (the corresponding RADIO LED switches off). To add additional radio controls, repeat the procedure from step 1.

DELETING RADIO CONTROLS

4
This procedure cannot be reversed. It will delete ALL radio control codes that have been memorised as OPEN A and OPEN B/CLOSE. The deletion procedure is only active in the automation status display mode

1. Press the - button and do not release it until the LED sequence has finished:

- after 5 s the RADIO2 LED starts flashing slowly
- after 5 s the RADI01 and RADIO2 LEDS both start to flash quickly (deletion in progress)
- after 5 s both the LEDs come on steadily (deletion complete)

2. Release the button, both LEDs switch off after approximately 10 s .

9. UPLOAD/DOWNLOAD

There is a USB port on the Brain19 board that can be used for the following:

- Load data from a USB pen drive (UPLOAD)
- saving data to a USB pen drive (DOWNLOAD).

Use a USB storage device that has a maximum power consumption of 500 mA formatted with the FAT or FAT 32 file system. The NTFS format is not recognised by the board.

1. Turn the power off and insert the USB pen drive into the USB port on the Logic board and then switch on the board.
2. bo appears on the display and the USB LED comes on.
3. Press and release the \mathbf{F} button to scroll through the Upload/Download menu options (see relative table).

UPLOAD OPERATIONS

In order to be used, the files must be saved in the root directory of a USB memory device (not in a folder or a zip file and without their original names being changed).

Display	Function	File name
US	Update FW	BRN19sw.cod
Lic	Upload board configuration	BRN19.prg
Lir	Upload radio codes	BRN19.rad

1. Press and hold the $\boldsymbol{+}$ and - buttons simultaneously for at least 5 seconds in order to carry out the function displayed.

- The operation starts:-- flashes on the display and the USB LED flashes. Release the buttons.
- The procedure ends when \bigcup appears on the display. If there are errors no appears on the display and the red ERROR LED lights up. To display the error code, press buttons + and -simultaneously. The error messages are described in the Diagnostics Section.

2. Press \mathbf{F} to return to the menu.

DOWNLOAD OPERATIONS

Display Function	File name
dil	Download board configuration

1. To carry out the function displayed, press and hold the $\boldsymbol{+}$ and $\boldsymbol{-}$ buttons simultaneously for at least 5 seconds, until 00 appears on the display.
2. Release the buttons and use the + or - buttons to select the method for saving the file to the root of the USB storage device:
saves the file without a suffix and overwrites any existing file with the same name in the USB memory (e.g. BRN19.prg)
Ol saves the file by adding a 3-digit suffix to the name (e.g. BRN19000.prg) and if there is already a file with the same name in the root of the USB memory, the number of the suffix is incremented.
Note: the suffix must be deleted if you wish to load the file in the upload operation.
3. Press \mathbf{F} to run.

The procedure ends when $Ч$ appears on the display. If there are errors no appears on the display and the red ERROR LED lights up. To display the error code, press buttons + and - simultaneously. The error messages are described in the Diagnostics Section.

GeNivs

10．DIAGNOSTICS

10．1 FIRMWARE VERSION

The firmware version is show on the display for 5 seconds each time it is switched on．

10．2 CHECKING THE MOVEMENT

Access basic programming and use function M2 for Leaf2（displayed if the automation is configured for 2 leaves）and function III for Leaf1．
1．The function displays -- ．
2．Use buttons + and－in dead man mode．One of the expected commands must be given：

+ to OPEN（oP on the display）
－to CLOSE（ $_$L on the display）
Otherwise，temporarily disconnect the power supply and invert the phases（ $\mathrm{OP} / \mathrm{CL}$ ）of the motor．

曲 9 Status of the LEDs

10．3 AUTOMATED SYSTEM STATUS

The display，other than in the programming menu， provides information regarding the status of the automation system：
囲 8 Automated system status

00	CLOSED	DIG	CLOSING
01	OPEN	07	Fallsafe in Progress
ロ2	STATIONARY THEN OPENS	08	CHECK Bus 6 －Way
03	Stationary then closes	09	PREFLLSHING BEFOREOPENING
04	in PAUSE	10	PREFLASHING BEFORECLOSING
	OPENING		

10．4 LEDS CHECK

囲 9 bold indicates the condition of the LEDs with the board powered，the gate at its halfway position and no connected device active（ - on ；$\bigcirc=0$ off）．

LED	colour	meaning	－	\bigcirc
OPEN A	red	Total motion command	active	not active
OPEN B	red	Partial motion command	active	not active
STOP	red	Stop command	not active	active
FSW CL	red	Closing photocells	not active	active
FSW OP	red	Opening photocells	not active	active
FCA1	red	Opening limit switch motor 1	not active	active
FCC1	red	Closing limit switch motor 1	not active	active
FCA2	red	Opening limit switch motor 2	not active	active
FCC2	red	Closing limit switch motor 2	not active	active
5 V	blue	Power supply 5 V	on	off
24V	blue	Accessories power supply $24 \mathrm{~V}=-$	on	off
BUS	red	Bus G－Way devices	see § Bus G－Way devices	
BUS MON	green	Bus G－Way devices		
USB	red	USB pen drive inserted（＊）	Installed	not inserted
RADI01	red	Radio Channel 1 （＊）	active	not active
RADI02	red	Radio Channel 2 （＊）	active	not active

${ }^{(*)}$ Additional LED status or meanings are shown in the section on the accessory to which it refers．

LED	colour	meaning	$\boldsymbol{*}$	\bullet	\bigcirc
ERROR	red	Error／alarm signalling	alarm in progress	error in progress	not active

10．5 ERRORS

An error is a condition that stops the automation．
When an error occurs：the ERROR LED turns on with a steady light．
When not in the programming menus，press the + and $=$ simultaneously to display the relative er－ ror code．

囲 10 Errors
DI Board failure
Perform RESET．If the problem persists，replace the Brain19．

SETUP incorrect／miss－Perform SETUP．
ing

Bus G－Way device Check the addresses of the devices． fault／conflict

Bus G－Way short cir－
cuit／overload

12	Call Bus G－Way	Check the connections of the Bus G －Way devices and repeat the acquisition procedure if necessary．
$1 \exists$	FAIL SAFE Test failed	FAILSAFE test of a device failed．Check the connections， programming，and that the pho－ tocell／sensitive edges are working correctly．
14	Configuration Error	Check the board configuration （basic and advanced program－ ming）and if necessary carry out the SETUP procedure．
17	Failure encoder 1	Make sure that the encoder is con－ nected properly．If the problem persists，replace the encoder．
18	Failure encoder 2	Make sure that the encoder is con－ nected properly．If the problem persists，replace the encoder．
19	Corrupted data in memory	Repeat Bus G－Way programming and registration．

10．6 ALARMS

An alarm is a condition that does not affect the opera－ tion of the automation．
The ERROR LED flashes when an alarm occurs．
When not in the programming menus，press the + and $=$ simultaneously to display the relative alarm code．

囲 11 AlarmsObstacle detected
Leaf1
An obstacle that prevents the leaf from moving has been detected．Re－ move the obstacle．

Obstacle detected An obstacle that prevents the leaf from moving has been detected．Re－ move the obstacle．

LOCK fault．Check the connec－ tion．Remove the cause of the short circuit．

The programmed number of con－ secutive obstacles in opening has been reached．Remove the obsta－ cle．If the problem persists，repeat the SETUP．

The programmed number of con－ secutive obstacles in closing has been reached．Remove the obstacle．If the problem persists，repeat the SETUP．
Consecutive obsta－
cles in closing

Radio code The radio memory is full．
memory full
Use an additional external module if necessary．
progress

An attempt to open the leaf manu－ ally has been detected．Start a movement．
11. MAINTENANCE

RISKS

PERSONAL PROTECTIVE EQUIPMENT

Always shut off the power supply before performing any maintenance operations. If the disconnect switch is not in view, apply a warning sign stating "WARNING - Maintenance in Progress". Restore the power supply only after finishing any maintenance work and restoring the area to normal.

\triangle
Maintenance must be performed by the installer or a maintenance technician.
Follow all safety recommendations and instructions given in this manual.
Mark off the work site and prohibit access/transit. Do not leave the work site unattended.
The work area must be kept tidy and clear upon completing maintenance.
Before starting work, wait for any hot components to cool down.
Do not make any modifications to the original components.
FAAC S.p.A. shall bear no liability for damage or injury due to components that have been modified or otherwise tampered with.

The warranty shall be forfeited in the event of tampering with components.
Only use original GENIUS spare parts.

11.1 SCHEDULED MAINTENANCE

曲 12 lists the operations that should be performed on a regular basis on the Brain19 board in order to keep the automation working reliably and safely; these are given purely as a guideline and should not be considered exhaustive. The installer/machine manufacturer is responsible for drawing up the maintenance plan for the automation, supplementing this list or modifying the maintenance operations on the basis of the machine characteristics.

12 Scheduled maintenance

| Operation |
| :--- | :--- |
| Electronic equipment
 Check that the power supply and connecting cables and the
 cable glands are intact. |

Check that the connectors and wiring are intact. 12
Check that there are no signs of overheating, burning etc. of 12 electronic components.
Check that the earth connections are intact. 12
Check the operation of the circuit breaker and differential 12 switch.

Control devices

Check that the installed devices and radio controls are in good
condition and that they operate correctly.

Sensitive edges

Check condition, fastening and correct operation.6

Photocells

Check condition, fastening and correct operation. 6
Check the posts, ensuring that they are intact, correctly
fastened and free of deformation etc.

Flashing light

Check condition, fastening and correct operation.

Complete automation system

Check that the automation system operates correctly, according to the set parameters, when using the various 12 control devices.
Check that the gate moves correctly - smooth, regular and without abnormal noise.
Check that both the opening and closing speed are correct and that the stop positions and slow-downs provided for 12 are respected.
Check that the manual release operates correctly: when the release mechanism is activated, it must only be possible to 6 move the gate manually.
Check that the maximum force required for manual movement of the gate is below 225 N in residential areas and $390 \quad 6$ N in industrial or commercial settings.
Check that the sensitive edges operate correctly when an obstacle is detected.
Check that each pair of photocells is working correctly. 6
Check that there is no optical/light interference between the pairs of photocells.
Check the force limitation curve (standard EN 12453). For non-EU countries, of there are no specific local regulations, 6 the force must be less than 150 N .

GeNiUS

Sede legale: FAAC S.p.A. Soc. Unipersonale Via Calari, 10-40069 Zola Predosa BOLOGNA - ITALY Tel. +39051 61724-Fax +390510957820

